Introduction

The management of non-ST segment elevation myocardial infarction (NSTEMI) is a complex interplay of therapeutic maneuvers aimed at reducing ischemic risks while minimizing bleeding complications. Percutaneous coronary intervention (PCI) has revolutionized the treatment of NSTEMI, with a concurrent focus on predicting and preventing in-hospital bleeding events. The Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) score is a clinically validated tool designed to predict in-hospital bleeding risk. The utility of the CRUSADE score in diverse populations, especially in Asian cohorts undergoing contemporary PCI, necessitates further examination.

A recent study in “Catheterization and Cardiovascular Interventions,” the official journal of the Society for Cardiac Angiography & Interventions, reported the external validation of an updated version of the CRUSADE score using data from the Thai PCI registry. This article provides a comprehensive analysis of the study’s methodology, findings, implications, and discusses the broader context of bleeding risk assessment in the cardiology field.

Study Overview

The validation study utilized data from the Thai PCI registry, which is a prospective, multicenter registry enrolling NSTEMI patients between May 2018 and August 2019. The study cohort consisted of 5,976 NSTEMI patients treated with PCI. The authors aimed to validate the existing CRUSADE score and to propose an updated and simplified version to enhance predictive accuracy and clinical applicability.

The original CRUSADE score was derived from eight predictors: sex, diabetes, prior vascular disease (PVD), congestive heart failure (CHF), creatinine clearance (CrCl), hematocrit, systolic blood pressure, and heart rate (HR). Based on these parameters, the researchers calculated the scores for the patients in the registry and employed logistic regression to fit these to in-hospital major bleeding events.

Key Findings

The CRUSADE score’s revision led to a refined model with impressive C-statistics of 0.817 (95% CI: 0.762-0.871) for the original iteration and 0.839 (95% CI: 0.789-0.889) for the updated version. Remarkably, a simplified CRUSADE score encompassing fewer variables (hematocrit, CrCl, HR, and CHF) also yielded a high C-statistic of 0.837 (95% CI: 0.787-0.886), suggesting that predictive accuracy was maintained even with a reduced dataset. The revised models showed optimal calibration across the examined population, indicating the scores’ reliability in predicting bleeding risks.

Implications for Clinical Practice

The robust performance of the full and simplified CRUSADE scores suggests their utility in everyday clinical practice, particularly for NSTEMI patients undergoing PCI in a Thai setting. Health care practitioners can leverage these tools to stratify patients by their bleeding risk, further tailoring their management and potentially improving outcomes.

By incorporating the updated CRUSADE score into clinical risk assessment protocols, medical teams can make informed decisions about the type and intensity of antithrombotic therapy and the use of bleeding avoidance strategies. Such precision medicine approaches align with recent trends in personalized healthcare, increasing the potential to minimize adverse events.

Context Within the Field of Cardiology

Bleeding complications are a common concern in the management of acute coronary syndromes (ACS), and their detrimental effect on prognosis is well-documented. The external validation of the CRUSADE score in the Thai PCI registry signifies an important step in translating clinical research into practice, especially for the Asian population. Previous studies have indicated a higher bleeding risk in Asian populations, which underscores the need for region-specific validation of bleeding risk scores.

Conclusion

The successful external validation and update of the CRUSADE score within the Thai PCI registry accentuate its clinical value in predicting in-hospital bleeding among NSTEMI patients undergoing PCI. This study exemplifies the ongoing efforts to refine risk stratification tools according to the evolving needs of diverse patient populations. It also emphasizes the critical balance between the benefits of aggressive anti-ischemic therapy and the prevention of bleeding complications in the catheterization laboratory.

References

Collet, J.-P., Thiele, H., Barbato, E., et al. (2021). 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J, 42(14), 1289-1367. doi:10.1093/eurheartj/ehaa575

Subherwal, S., Bach, R. G., Chen, A. Y., et al. (2009). Baseline risk of major bleeding in non-ST-segment elevation myocardial infarction. Circulation, 119(14), 1873-1882. doi:10.1161/CIRCULATIONAHA.108.828541

Schiele, F., Gale, C. P., Bonnefoy, E., et al. (2017). Quality indicators for acute myocardial infarction: a position paper of the acute cardiovascular care association. Eur Heart J Acute Cardiovasc Care, 6(1), 34-59. doi:10.1177/2048872616633853

Liu, R., Lyu, S.-Z., Zhao, G.-Q., et al. (2017). Comparison of the performance of the crusade, acuity-horizons, and action bleeding scores in ACS patients undergoing PCI: insights from a cohort of 4939 patients in China. J Geriatr Cardiol, 14(2), 93-99. doi:10.11909/j.issn.1671-5411.2017.02.005

Simonsson, M., Winell, H., Olsson, H., et al. (2019). Development and validation of a novel risk score for in-hospital major bleeding in acute myocardial infarction; The Swedeheart Score. J Am Heart Assoc, 8(5), e012157. doi:10.1161/JAHA.119.012157

Misumida, N., Ogunbayo, G. O., Kim, S. M., Abdel-Latif, A., Ziada, K. M. (2018). Higher risk of bleeding in Asians presenting with non-ST-segment elevation myocardial infarction. Angiology, 69(6), 555-556. doi:10.1177/0003319717745646

Sansanayudh, N., Srimahachota, S., Chandavimol, M., et al. (2021). Multi-center, prospective, nation-wide coronary angioplasty registry in Thailand (Thai PCI Registry): registry design and rationale. J Med Assoc Thai, 104, 1678-1685.

Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., White, H. D. (2012). Third universal definition of myocardial infarction. Circulation, 126(16), 2020-2035. doi:10.1161/CIR.0b013e31826e1058

Toll, D. B., Janssen, K. J. M., Vergouwe, Y., Moons, K. G. M. (2008). Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol, 61(11), 1085-1094. doi:10.1016/j.jclinepi.2008.04.006

Généreux, P., Giustino, G., Witzenbichler, B., et al. (2015). Incidence, predictors, and impact of post-discharge bleeding after percutaneous coronary intervention. J Am Coll Cardiol, 66(9), 1036-1045. doi:10.1016/j.jacc.2015.06.1315

Gluckman, T. J., Wang, L., Spinelli, K. J., et al. (2020). Differential use and impact of bleeding avoidance strategies on percutaneous coronary intervention-related bleeding stratified by predicted risk. Circ Cardiovasc Interv, 13(6), e008702. doi:10.1161/CIRCINTERVENTIONS.119.008702

Spertus, J. A., Decker, C., Gialde, E., et al. (2015). Precision medicine to improve use of bleeding avoidance strategies and reduce bleeding in patients undergoing percutaneous coronary intervention: prospective cohort study before and after implementation of personalized bleeding risks. BMJ, 350, h1302. doi:10.1136/bmj.h1302

Kawashima, H., Gao, C., Takahashi, K., et al. (2020). Comparative assessment of predictive performance of PRECISE-DAPT, CRUSADE, and ACUITY scores in risk stratifying 30-day bleeding events. Thromb Haemostasis, 120(7), 1087-1095. doi:10.1055/s-0040-1708483

Subherwal, S., Peterson, E. D., Dai, D., et al. (2012). Temporal trends in and factors associated with bleeding complications among patients undergoing percutaneous coronary intervention. J Am Coll Cardiol, 59(21), 1861-1869. doi:10.1016/j.jacc.2011.12.045

Lindholm, D., Varenhorst, C., Cannon, C. P., et al. (2014). Ticagrelor vs. clopidogrel in patients with non-ST-elevation acute coronary syndrome with or without revascularization: results from the PLATO trial. Eur Heart J, 35(31), 2083-2093. doi:10.1093/eurheartj/ehu319

Numasawa, Y., Inohara, T., Ishii, H., et al. (2019). Comparison of outcomes after percutaneous coronary intervention in elderly patients, including 10 628 nonagenarians: insights from a Japanese nationwide registry (J-PCI Registry). J Am Heart Assoc, 8(5), e011183. doi:10.1161/JAHA.118.011183

Hosmer, D. W., Lemeshow, S., Sturdivant, R. X. (2013). Applied logistic regression. Wiley.

Jinatongthai, P., Khaisombut, N., Likittanasombat, K., Chaiyakunapruk, N., Watcharathanakij, S., Nathisuwan, S. (2014). Use of the CRUSADE bleeding risk score in the prediction of major bleeding for patients with acute coronary syndrome receiving enoxaparin in Thailand. Heart, Lung Circ, 23(11), 1051-1058. doi:10.1016/j.hlc.2014.05.004

Cook, N. R. (2007). Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation, 115(7), 928-935. doi:10.1161/CIRCULATIONAHA.106.672402

Alba, A. C., Agoritsas, T., Walsh, M., et al. (2017). Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA, 318(14), 1377-1384. doi:10.1001/jama.2017.12126

Raposeiras-Roubín, S., Faxén, J., Íñiguez-Romo, A., et al. (2018). Development and external validation of a post-discharge bleeding risk score in patients with acute coronary syndrome: the BleeMACS score. Int J Cardiol, 254, 10-15. doi:10.1016/j.ijcard.2017.10.064

Krittayaphong, R., Chichareon, P., Komoltri, C., Kornbongkotmas, S., Yindeengam, A., Lip, G. Y. H. (2020). Low body weight increases the risk of ischemic stroke and major bleeding in atrial fibrillation: the COOL-AF registry. J Clin Med, 9(9), 2713. doi:10.3390/jcm9092713

Wilkinson, C., Bebb, O., Dondo, T. B., et al. (2019). Sex differences in quality indicator attainment for myocardial infarction: a nationwide cohort study. Heart, 105(7), 516-523. doi:10.1136/heartjnl-2018-313667

Vinik, A. I., Erbas, T., Park, T. S., Nolan, R., Pittenger, G. L. (2001). Platelet dysfunction in type 2 diabetes. Diabet Care, 24(8), 1476-1485. doi:10.2337/diacare.24.8.1476

Mathews, R., Peterson, E. D., Chen, A. Y., et al. (2011). In-Hospital major bleeding during ST-elevation and non ST-elevation myocardial infarction care: derivation and validation of a model from the action registry. Am J Cardiol, 107(8), 1136-1143. doi:10.1016/j.amjcard.2010.11.026

Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3-16. doi:10.1007/s00125-018-4711-2

Chichareon, P., Modolo, R., Kogame, N., et al. (2020). Association of diabetes with outcomes in patients undergoing contemporary percutaneous coronary intervention: pre-specified subgroup analysis from the randomized global leaders study. Atherosclerosis, 295, 45-53. doi:10.1016/j.atherosclerosis.2019.10.013

Brener, S. J., Kirtane, A. J., Rinaldi, M. J., et al. (2018). Prediction of ischemic and bleeding events using the dual antiplatelet therapy score in an unrestricted percutaneous coronary intervention population. Circ Cardiovasc Interv, 11(10), e006853. doi:10.1161/CIRCINTERVENTIONS.118.006853

Shahzad, A., Kemp, I., Mars, C., et al. (2014). Unfractionated heparin versus bivalirudin in primary percutaneous coronary intervention (HEAT-PPCI): an open-label, single centre, randomised controlled trial. Lancet, 384(9957), 1849-1858. doi:10.1016/S0140-6736(14)60924-7

Montalescot, G., Bolognese, L., Dudek, D., et al. (2013). Pretreatment with prasugrel in non-ST-segment elevation acute coronary syndromes. N Engl J Med, 369(11), 999-1010. doi:10.1056/NEJMoa1308075

Chew, D. P., Hyun, K., Morton, E., et al. (2021). Objective risk assessment vs standard care for acute coronary syndromes: a randomized clinical trial. JAMA Cardiol, 6(3), 304-313. doi:10.1001/jamacardio.2020.6314

Keywords

1. CRUSADE score
2. In-hospital bleeding
3. Percutaneous coronary intervention
4. Non-ST elevation myocardial infarction
5. Thai PCI registry